Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Search in posts
Search in pages
← Sidebar öffnen

Mooresches Gesetz (Exponentielle technologische Evolution)

Das Mooresche Gesetz (englisch Moore’s law; deutsch „Gesetz“ im Sinne von „Gesetzmäßigkeit“) besagt, dass sich die Komplexität integrierter Schaltkreise mit minimalen Komponentenkosten regelmäßig verdoppelt; je nach Quelle werden 12, 18 oder 24 Monate als Zeitraum genannt.

Unter Komplexität verstand Gordon Moore, der das Gesetz 1965 formulierte, die Anzahl der Schaltkreiskomponenten auf einem integrierten Schaltkreis. Gelegentlich ist auch von einer Verdoppelung der Integrationsdichte die Rede, also der Anzahl an Transistoren pro Flächeneinheit. Diese technische Entwicklung bildet eine wesentliche Grundlage der „digitalen Revolution“.

Mehr: de.wikipedia.org/wiki/Mooresches_Gesetz

Siehe auch:

***

Shalf, J.. (2020). The future of computing beyond Moore’s Law. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences

Plain numerical DOI: 10.1098/rsta.2019.0061
DOI URL
directSciHub download

Chen, R., Li, Y. C., Cai, J. M., Cao, K., & Lee, H. B. R.. (2020). Atomic level deposition to extend Moore’s law and beyond. International Journal of Extreme Manufacturing

Plain numerical DOI: 10.1088/2631-7990/ab83e0
DOI URL
directSciHub download

Chien, A. A., & Karamcheti, V.. (2013). Moore’s law: The first ending and a new beginning. Computer

Plain numerical DOI: 10.1109/MC.2013.431
DOI URL
directSciHub download

Smit, M., van der Tol, J., & Hill, M.. (2012). Moore’s law in photonics. Laser and Photonics Reviews

Plain numerical DOI: 10.1002/lpor.201100001
DOI URL
directSciHub download

Lecuyer, C.. (2022). Driving Semiconductor Innovation: Moore’s Law at Fairchild and Intel. Enterprise and Society

Plain numerical DOI: 10.1017/eso.2020.38
DOI URL
directSciHub download

Farmer, J. D., & Lafond, F.. (2016). How predictable is technological progress?. Research Policy

Plain numerical DOI: 10.1016/j.respol.2015.11.001
DOI URL
directSciHub download

Debenedictis, E. P., Badaroglu, M., Chen, A., Conte, T. M., & Gargini, P.. (2017). Sustaining Moore’s Law with 3D Chips. Computer

Plain numerical DOI: 10.1109/MC.2017.3001236
DOI URL
directSciHub download

Reichardt, R.. (2006). Moore’s Law and the pace of change. Internet Reference Services Quarterly

Plain numerical DOI: 10.1300/J136v11n03_09
DOI URL
directSciHub download

Strawn, G., & Strawn, C.. (2015). Moore’s Law at Fifty. IT Professional

Plain numerical DOI: 10.1109/MITP.2015.109
DOI URL
directSciHub download

Mollick, E.. (2006). Establishing Moore’s law. IEEE Annals of the History of Computing

Plain numerical DOI: 10.1109/MAHC.2006.45
DOI URL
directSciHub download

Theis, T. N., & Philip Wong, H. S.. (2017). The End of Moore’s Law: A New Beginning for Information Technology. Computing in Science and Engineering

Plain numerical DOI: 10.1109/MCSE.2017.29
DOI URL
directSciHub download

Debenedictis, E. P.. (2017). It’s Time to Redefine Moore’s Law Again. Computer

Plain numerical DOI: 10.1109/MC.2017.34
DOI URL
directSciHub download

Eeckhout, L.. (2017). Is Moore’s Law Slowing Down? What’s Next?. IEEE Micro

Plain numerical DOI: 10.1109/MM.2017.3211123
DOI URL
directSciHub download

Lundstrom, M. S., & Alam, M. A.. (2022). Moore’s law: The journey ahead. Science

Plain numerical DOI: 10.1126/science.ade2191
DOI URL
directSciHub download

Peper, F.. (2017). The End of Moore’s Law: Opportunities for Natural Computing?. New Generation Computing

Plain numerical DOI: 10.1007/s00354-017-0020-4
DOI URL
directSciHub download

Lu, C. P.. (2017). AI, native supercomputing and the revival of Moore’s Law. APSIPA Transactions on Signal and Information Processing

Plain numerical DOI: 10.1017/ATSIP.2017.9
DOI URL
directSciHub download

MacK, C.. (2015). The Multiple Lives of Moore’s Law. IEEE Spectrum

Plain numerical DOI: 10.1109/MSPEC.2015.7065415
DOI URL
directSciHub download

Track, E., Forbes, N., & Strawn, G.. (2017). The End of Moore’s Law. Computing in Science and Engineering

Plain numerical DOI: 10.1109/MCSE.2017.25
DOI URL
directSciHub download

Waldrop, M. M.. (2016). The chips are down for Moore’s law. Nature

Plain numerical DOI: 10.1038/530144a
DOI URL
directSciHub download

***

Dean, J., Patterson, D., & Young, C.. (2018). A New Golden Age in Computer Architecture: Empowering the Machine-Learning Revolution. IEEE Micro

Plain numerical DOI: 10.1109/MM.2018.112130030
DOI URL
directSciHub download

Fuchs, A., & Wentzlaff, D.. (2019). The Accelerator Wall : Limits of Chip Specialization Transistor Performance. 5th Annual IEEE International Symposium on High-Performance Computer Architecture (HPCA)
CAO, G., GUO, G.-P., LI, H.-O., ZHANG, X., & WANG, K.. (2017). Quantum computation based on semiconductor quantum dots. SCIENTIA SINICA Informationis

Plain numerical DOI: 10.1360/n112017-00118
DOI URL
directSciHub download

Chien, C. F., Wu, C. H., & Chiang, Y. S.. (2012). Coordinated capacity migration and expansion planning for semiconductor manufacturing under demand uncertainties. International Journal of Production Economics

Plain numerical DOI: 10.1016/j.ijpe.2011.10.024
DOI URL
directSciHub download

Dwivedi, A., & Dwivedi, A.. (2008). Emerging Trends in Nano Technology for Modern Industries. Certified International Journal of Engineering and Innovative Technology (IJEIT
Thylén, L.. (2006). A Moores law for photonics. In Proceedings of International Symposium on Biophotonics, Nanophotonics and Metamaterials, Metamaterials 2006

Plain numerical DOI: 10.1109/METAMAT.2006.335053
DOI URL
directSciHub download